All posts in “Satellites”

FCC approval of Europe’s Galileo satellite signals may give your phone’s GPS a boost

The FCC’s space-focused meeting today had actions taken on SpaceX satellites and orbital debris reduction, but the decision most likely to affect users has to do with Galileo . No, not the astronomer — the global positioning satellite constellation put in place by the E.U. over the last few years. It’s now legal for U.S. phones to use, and a simple software update could soon give your GPS signal a major bump.

Galileo is one of several successors to the Global Positioning System that’s been in use since the ’90s. But because it is U.S.-managed and was for a long time artificially limited in accuracy to everyone but U.S. military, it should come as no surprise that European, Russian, and Chinese authorities would want their own solutions. Russia’s GLONASS is operational and China is hard at work getting its BeiDou system online.

The E.U.’s answer to GPS was Galileo, and the 26 (out of 30 planned) satellites making up the constellation offer improved accuracy and other services, such as altitude positioning. Test satellites went up as early as 2005, but it wasn’t until 2016 that it began actually offering location services.

A Galileo satellite launch earlier this year.

Devices already existed that would take advantage of Galileo signals — all the way back to the iPhone 6S, the Samsung Galaxy S7, and many others from that era forward. It just depends on the wireless chip inside the phone or navigation unit, and it’s pretty much standard now. (There’s a partial list of smartphones supporting Galileo here.)

When a company sells a new phone, it’s much easier to just make a couple million of the same thing rather than make tiny changes like using a wireless chipset in U.S. models that doesn’t support Galileo. The trade-off in savings versus complexity of manufacturing and distribution just isn’t worthwhile.

The thing is, American phones couldn’t use Galileo because the FCC has regulations against having ground stations being in contact with foreign satellites. Which is exactly what using Galileo positioning is, though of course it’s nothing sinister.

If you’re in the U.S., then, your phone likely has the capability to use Galileo but it has been disabled in software. The FCC decision today lets device makers change that, and the result could be much-improved location services. (One band not very compatible with existing U.S. navigation services has been held back, but two of the three are now available.)

Interestingly enough, however, your phone may already be using Galileo without your or the FCC’s knowledge. Because the capability is behind a software lock, it’s possible that a user could install an app or service bringing it into use. Perhaps you travel to Europe a lot and use a French app store and navigation app designed to work with Galileo and it unlocked the bands. There’d be nothing wrong with that.

Or perhaps you installed a custom ROM that included the ability to check the Galileo signal. That’s technically illegal, but the thing is there’s basically no way for anyone to tell! The way these systems work, all you’d be doing is receiving a signal illegally that your phone already supports and that’s already hitting its antennas every second — so who’s going to report you?

It’s unlikely that phone makers have secretly enabled the Galileo frequencies on U.S. models, but as Commissioner Jessica Rosenworcel pointed out in a statement accompanying the FCC action, that doesn’t mean it isn’t happening:

If you read the record in this proceeding and others like it, it becomes clear that many devices in the United States are already operating with foreign signals. But nowhere in our record is there a good picture of how many devices in this country are interacting with these foreign satellite systems, what it means for compliance with our rules, and what it means for the security of our systems. We should change that. Technology has gotten ahead of our approval policies and it’s time for a true-up.

She isn’t suggesting a crackdown — this is about regulation lagging behind consumer tech. Still, it is a little worrying that the FCC basically has no idea, and no way to find out, how many devices are illicitly tuning in to Galileo signals.

Expect an update to roll out to your phone sometime soon — Galileo signals will be of serious benefit to any location-based app, and to public services like 911, which are now officially allowed to use the more accurate service to determine location.

SpaceX’s Starlink aims to put over a thousand of its communications satellites in super-low orbit

SpaceX’s planned communication satellite constellation, known as Starlink, will now be targeting a much lower orbit than originally planned, at least for over a thousand of the satellites, the company revealed in an FCC filing. The move should help mitigate orbital debris and provide better signal for the company’s terrestrial users as well.

Starlink plans to put 1,584 satellites — about a third of the 4,409 the company aims to launch — in an orbit just 550 kilometers about the surface of the Earth. For comparison, many communications satellites are in orbits over twice as high, and geosynchronous orbits are more than 20 times further out (around 36,000 miles).

At that distance orbits decay quickly, falling into the atmosphere and burning up after a handful of years. But SpaceX isn’t daunted; in fact, it writes in its application, lower orbits offer “several attractive features both during nominal operation and in the unlikely event something goes wrong.”

In the first place, orbital debris problems are naturally mitigated by the fact that anything in that low orbit will fall to Earth quickly instead of cluttering up the orbit. Second, it should shorten the amount of time it takes to send and receive a signal from the satellites — ping time could be as low as 15 milliseconds, the company estimated. 500 fewer kilometers means there will be less spreading for beam-based communications, as well.

The satellites will have to do more work to stay at their optimal altitude, since atmospheric drag will be higher, and each one will be able to see and serve less of the planet. But with thousands working together, that should be manageable.

The decision was informed by experimental data from the “Tintin” test satellites the company launched earlier this year. “SpaceX has learned to mitigate the disadvantages of operating at a lower altitude and still reap the well-know and significant benefits discussed above,” it wrote.

This change could lead to competitive advantages when satellite communications are more widely used, but it will also likely lead to a more intensive upkeep operation as Starlink birds keep dropping out of the air. Fortunately a third benefit of the lower orbit is that it’s easier to reach, though probably not so much easier that the company breaks even.

Starlink is aiming for the first real launches of its systems early next year, though that timeline may be a little too ambitious. But SpaceX can do ambitious.

Accion Systems takes on $3M in Boeing-led round to advance its tiny satellite thrusters

Accion Systems, the startup aiming to reinvent satellite propulsion with an innovative and tiny new thruster, has attracted significant investment from Boeing’s HorizonX Ventures. The $3 million round should give the company a bit of breathing room while it continues to prove and improve its technology.

“Investing in startups with next-generation concepts accelerates satellite innovation, unlocking new possibilities and economics in Earth orbit and deep space,” said HorizonX Ventures managing director Brian Schettler in a press release.

Accion, whose founder and CEO Natalya Bailey graced the stage of Disrupt just a few weeks ago, makes what’s called a “tiled ionic liquid electrospray” propulsion system, or TILE. This system is highly efficient and can be made the size of a postage stamp or much larger depending on the requirements of the satellite.

Example of a TILE attached to a satellite chassis.

The company has tested its tech in terrestrial facilities and in space, but it hasn’t been used for any missions just yet — though that may change soon. A pair of student-engineered cubesats equipped with TILE thrusters are scheduled to take off on RocketLab’s first big commercial payload launch, “It’s Business Time.” It’s been delayed a few times but early November is the next launch window, so everyone cross your fingers.

Another launch scheduled for November is the IRVINE 02 cubesat, which will sport TILEs and go up aboard a Falcon 9 loaded with supplies for the International Space Station.

The Boeing investment (Gettylab also participated in the round) doesn’t include any guarantees like equipping Boeing-built satellites with the thrusters. But the company is certainly already dedicated to this type of tech and the arrangement is characterized as a partnership — so it’s definitely a possibility.

Natalya Bailey and Rob Coneybeer (Shasta Ventures) at Disrupt Berlin 2017.

A Boeing representative told me that this is aimed to help Accion scale, and that the latter will have access to the former’s testing facilities and expertise. “We believe there will be many applications for Accion’s propulsion system, and will be monitoring and assessing the tech as it continues to mature,” they wrote in an email.

I asked Accion what the new funding will be directed towards, but a representative only indicated that it would be used for the usual things: research, operations, staff expenses, and so on. Not some big skunk works project, then. The company’s last big round was in 2016, when it raised $7.5 million.

EarthNow promises real-time views of the whole planet from a new satellite constellation

A new space imaging startup called EarthNow aims to provide not just pictures of the planet on demand, but real-time video anywhere a client desires. Its ambition is matched only by its pedigree: Bill Gates, Intellectual Ventures, Airbus, Softbank, and OneWeb founder Greg Wyler are all backing the play.

Its promise is a constellation of satellites that will provide video of anywhere on Earth with latency of about a second. You won’t have to wait for a satellite to come into range, or worry about leaving range; at least one will be able to view any area at any given time, so they can pass of the monitoring task to the next satellite over if necessary.

Initially aimed at “high value enterprise and government customers,” EarthNow lists things like storm monitoring, illegal fishing vessels (or even pirates), forest fires, whale tracking, watching conflicts in real time, and more. Space imaging is turning into quite a crowded field — if all these constellations actually launch, anyway.

The company is in the earliest stages right now, having just been spun out from years of work by founder and CEO Russell Hannigan at Intellectual Ventures under the Invention Science Fund. Early enough, in fact, that there’s no real timeline for prototyping or testing. But it’s not just pie in the sky.

Wyler’s OneWeb connection means EarthNow will be built on a massively upgraded version of that company’s satellite platform. Details are few and far between, but the press release promises that “Each satellite is equipped with an unprecedented amount of onboard processing power, including more CPU cores than all other commercial satellites combined.”

Presumably a large portion of that will be video processing and compression hardware, since they’ll want to minimize bandwidth and latency but don’t want to skimp on quality. Efficiency is important, too; satellites have extremely limited power, so running multiple off-the-shelf GPUs with standard compression methods probably isn’t a good idea. Real-time, continuous video from orbit (as opposed to near-real-time stills or clips) is as much a software problem as it is hardware.

Machine learning also figures, of course: the company plans to do onboard analysis of the imagery, though to what extent isn’t clear. It really makes more sense to me to do this on the ground, but perhaps a first pass by the satellite’s hardware will help move things along.

Airbus will do its part by actually producing the satellites, in Toulouse and Florida. The release doesn’t say how many will be built, but full (and presumably redundant) Earth coverage means dozens at the least. But if they’re mass manufactured standard goods, that should keep the price down, relatively speaking anyway.

No word on the actual amount raised by the company in January, but with the stature of the investors and the high costs involved in the industry, I can’t imagine it’s less than a few tens of millions.

Hannigan himself calls EarthNow “ambitious and unprecedented,” which could be taken as an admission of great risk, but it’s clear that the company has powerful partners and plenty of expertise; Intellectual Ventures doesn’t tend to spin something off unless it’s got something special going. Expect more specifics as the company grows, but I doubt we’ll see anything more than renders for a year or so.

FCC accuses stealth space startup of unauthorized satellite deployment


The FCC has denied a space startup permission to launch a collection of communications satellites after discovering that it had already launched some — after being told not to. Swarm Technologies, still in stealth mode, appears to have gone ahead with the deployment of four satellites deemed too small to be tracked and therefore unsafe to put into orbit.

IEEE Spectrum put the pieces together from public FCC documents and some launch manifests. Swarm’s original plan was to put several very small satellites — smaller even than 1U Cubesats — in orbit to test its experimental communications system.

But the small size meant the satellites couldn’t be tracked with existing space monitoring technology, and the FCC, which must approve communications satellite launches, considered this too great a risk and declined to authorize Swarm’s proposed deployment.

What should have happened next is: Swarm scrubs the deployment, applies again with larger satellites or some other means of improving the small ones’ visibility, the FCC grants permission and then the launch happens.

While the company did reapply with larger satellites, it seems to have gone ahead with the original plan of launching the tiny satellites despite the FCC’s warning not to. This is evident from the manifest of India’s Polar Satellite Launch Vehicle (PDF) that took off in January, which included four “SpaceBEEs” matching the description of Swarm’s unauthorized craft.

It’s possible that Swarm’s satellites were already locked and loaded, and perhaps more importantly, paid for, by the time the FCC issued their decision in December. The long lead times for both approval and launch mean that much prep must be done while a deployment is still waiting for the official go-ahead — if you waited for the red tape to clear before even applying for a launch spot, you might run out of funding just waiting for your chance to get into orbit.

But in this case, especially as the FCC cited a safety issue — the inability to reliably track the satellites’ location — the correct thing to do would be to pull out of the launch. That’s easy for me to say, of course, it’s not my money or company, but skirting the rules like this may prove more costly in the end than adhering to them.

I’ve asked Swarm, the FCC and Spaceflight (which appears to have arranged Swarm’s space on the launch, perhaps thinking authorization was forthcoming) for comment and will update this story if I hear back.

Featured Image: BlackJack3D/Getty Images UNDER A Royalty Free LICENSE